Review of Estimation Methods

MLE and GMM in Applied Settings

Erica Moszkowski^a emoszkowski@g.harvard.edu August 30, 2022

Harvard University, Econ 2610

^aBased on previous notes by David Hao Zhang, Ashvin Gandhi, Daniel Pollman, Tom Wollman, and Michael Sinkinson

Erica Moszkowski

Outline

Review of Extremum Estimators

MLE

GMM

Comparing Estimators

Computation

Erica Moszkowsk

Identification of Structural Parameters

- A *structrural parameter* is one that is invariant to a particular set of counterfacturals the researcher is interested in.
- *Identification* can refer to a lot of things (see Lewbel, JEL forthcoming), but at its most basic, it means that parameters or features of a model are uniquely determined from the observable population that generates the data.
 - Identification is a statement about *a model in the population*. It is not about the data you have!
 - Identification is obtained by imposing exclusions or other kinds of restrictions (read: assumptions) on your data.

"Extremum estimators are a wide class of estimators for **parametric** models that are calculated through maximization (or minimization) of a certain **objective function**, which depends on the **data**." – Wikipedia

Setup of an extremum estimator:

- Parameter space: $\Theta \subset \mathbb{R}^{K}$. K must be finite and independent of sample size.
- Data: $W_i = (Y_i, X_i)$ for observations $i = \{1, \dots, n\}$, iid
- Objective function: $Q_n(\theta_0)$

The estimate, $\hat{\theta}$, is the value that minimizes the objective function:

$$\hat{\theta} = \arg\min_{t} Q_n(t)$$

Identification and Consistency of an Extremum Estimator

Identificaton:

- Condititions for identification:
 - $\cdot \Theta$ is compact
 - $Q(\theta)$ is continuous in θ
 - θ_0 uniquely minimizes $Q(\theta)$

Consistency:

• An estimator is consistent if

$$\hat{\theta} \xrightarrow{p} \theta_0$$

or, more formally,

$$\lim_{n\to\infty} \Pr\left[\left\|\hat{\theta}-\theta_0\right\| > \epsilon\right] = 0, \, \forall \epsilon > 0.$$

Notation

- For distributions, upper case letters denote c.d.f.s and lower case letters denote p.d.f.s.
- For random variables, upper case letters denote the random variable itself and lower case letters denote the realization of the random variable (e.g., data before it is observed is *W_i*; once it's observed, it's *w_i*)
- For parameters, the subscript 0 denotes the true value of the parameter and a $\hat{}$ denotes an estimate. No annotation denotes a generic argument to a function.

Outline

Review of Extremum Estimators

MLE

GMM

Comparing Estimators

Computation

Erica Moszkowsk

Maximum Likelihood (MLE)

- 1. Let (W_1, \ldots, W_n) be iid random variables, where W_i has distribution F. The realizations (w_1, \ldots, w_n) correspond to the observed data.
- 2. Researcher picks a family of distributions, F_{θ} , indexed by a parameter $\theta \in \Theta$
 - For each observation, $pdf f(w_i|\theta)$ is the probability that you draw observation $W_i = w_i$ from a population distributed according to F_{θ}
- 3. The *likelihood* of observing your exact dataset is:

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f(w_i | \theta)$$

4. The maximum likelihood estimate, $\hat{\theta}^{MLE}$, of θ is the value that makes the observed data the "most probable" according to your model:

$$\hat{ heta}^{ extsf{MLE}} = rg\max_{t} \mathcal{L}(heta)$$

Erica Moszkowski

As we know, MLE is identified if the likelihood is **uniquely** maximized at the true value; that is:

$$rg\max_{ heta}\mathcal{L}\left(heta
ight)= heta'\iff heta'= heta_{0}$$

• We usually maximize the log likelihood, because summation is faster than multiplication:

$$\hat{ heta}^{MLE} = rg\max_t \log \mathcal{L}(heta) = \sum_{i=1}^n \log f(w_i| heta)$$

- Most programming languages' optimization functions do *minimization* rather than *maximization*: don't forget to multiply the log-likelihood by -1!
- I recommend writing a function, **likelihood**, that computes the log-likelihood for you. This makes your code much cleaner.

```
% In its own file:
function likelihood(theta,w) = sum(log(normpdf(w,theta)))
% When you estimate:
theta_hat = fminsearch(@(t) likelihood(t,w), theta_start)
```


Review of Extremum Estimators

MLE

GMM

Comparing Estimators

Computation

Erica Moszkowski

Generalized Method of Moments (GMM): Setup

• The researcher specifies a model that implies the moment condition

$$\mathbb{E}\left[\psi\left(W_{i},\theta_{0}\right)\right]=0,\tag{1}$$

where ψ is known and has dimension *L*.

- For us to be able (with infinite data) to tell a false θ apart from the true value, we need

$$\mathbb{E}\left[\psi(W_i,\theta)\right] \neq 0 \text{ for all } \theta \neq \theta_0 \tag{2}$$

- Identification also requires $L \ge K$ (i.e., more moment conditions than parameters $(\theta_1, \ldots, \theta_K)$).
- The sample analog of the moment $\mathbb{E}[\psi(W_i, \theta)]$ is:

$$m_n(\theta) = \frac{1}{n} \sum_{i=1}^n \psi(w_i, \theta) \in \mathbb{R}^L$$

Defining the Estimator

• Since θ_0 is the only θ that satisfies $\mathbb{E}[\psi(W_i, \theta)] = 0$, we might want to look for an estimator $\hat{\theta}^{GMM}$ that satisfies the system of *L* equations in *K* unknowns:

$$m_n(\hat{\theta}^{GMM})=0$$

- If L = K then this system typically has a solution
- But if L > K (the over-identified case), a solution may not exist. \rightarrow pick $\hat{\theta}^{GMM}$ to satisfy $m_n(\hat{\theta}^{GMM}) \approx 0$ as closely as possible.
- \cdot The GMM objective function is:

$$Q^{GMM}(\theta) = \underset{\theta}{\operatorname{argmin}} \mathbb{E} \left[\psi \left(w; \theta \right) \right]' C \mathbb{E} \left[\psi \left(w; \theta \right) \right]$$
(3)

- \cdot This is like the "sum of squared residuals", but C lets us be more flexible
- The GMM estimate, $\hat{\theta}^{GMM}$, is the value that minimizes the sample analog of eqn 3:

$$\hat{\theta}^{GMM} = \underset{\theta}{\operatorname{argmin}} Q_{C,n}^{GMM}(\theta) = m_n(\theta)' \hat{C} m_n(\theta)$$
(4)

Erica Moszkowski

Familiar Examples of Moment Conditions

• **Regression**: $Y_i = X'_i \theta + \varepsilon_i$

$$\mathbb{E}\left[X_i\varepsilon_i\right]=0.$$

• Instrumental Variables: $Y_i = X'_i \theta + \varepsilon_i$, $\mathbb{E}[X'_i \varepsilon_i] \neq 0$

 $\mathbb{E}\left[Z_i\varepsilon_i\right]=0.$

• Maximum likelihood: $\max_{\theta} \mathcal{L}(Y_i|X_i, \theta)$

$$\mathbb{E}\left[\frac{\partial \log \mathcal{L}(Y_i|X_i,\theta)}{\partial \theta}\right] = 0.$$

Typical moment conditions in IO applications

1. Orthogonality conditions:

- Examine your model for zero-correlation conditions.
- Example: Any variable Z that is uncorrelated with unobserved heterogeneity in product characteristics, ξ , can be used as an instrument. The moment condition is

$$\mathbb{E}[Z'\xi]=0$$

2. First order conditions:

• **Best-Response/Nash conditions**: Equilibrium conditions which we assume to hold on the supply side, such as Differentiated Products Bertrand Equilibrium:

$$\max \underbrace{s(p)}_{\text{share markup}} \underbrace{[p-c]}_{\text{moment condition}} \implies \text{FOC: } \underbrace{s'(p)[p-c] + s(p) = 0}_{\text{moment condition}}$$

• **Consumer optimality**: Consumer may optimally stockpile, for example, based on sales frequencies and amounts.

Erica Moszkowski

Typical moment conditions in IO applications, ctd

3. Moment matching:

Lots of papers do the following thing:

- 1. Write up a model with some parameter vector θ .
- 2. Determine how the model implies moments of the data should depend on θ .
 - You can derive this relationship analytically or by simulation.
 - Example: The probability that an individual chooses an insurance plan is a known function of their risk aversion (same for everyone) and health risk (drawn from some parameterized distribution). Simulate a lot of individuals' choice probabilities, then aggregate.
- 3. Pick $\hat{\theta}$ such that the model-implied moments, match the empirical moments as closely as possible (using whatever metric you like, often sum-of-squares)

Recall that an extremum estimator is identified iff

$$\theta = \arg\min_{t} Q^{GMM}(t) \iff \theta = \theta_0$$

Therefore, GMM is identified if:

1.
$$\mathbb{E}\left[\psi\left(W_{i};\theta\right)\right]=0\iff\theta=\theta_{0}$$

- It's generally hard to show $\mathbb{E}[\psi(W_i, \theta_0)] = 0$. Many papers don't actually prove their model is identified.
- 2. the weight matrix C is nonsingular, and
- 3. $L \ge K$

- For GMM, pointwise convergence of the sample objective function to the population objective function is easy:
 - $m_n(\theta) \xrightarrow{p} \mathbb{E}[\psi(W_i, \theta)]$ by the law of large numbers
 - $\cdot~\hat{\textit{C}} \rightarrow \textit{C}$ by assumption
 - So for all $\theta \in \Theta$, $m_n(\theta)'\hat{C}m_n(\theta) \xrightarrow{p} \mathbb{E}[\psi(W_i, \theta)]C\mathbb{E}[\psi(W_i, \theta)]$
- There are stronger conditions under which the sample GMM objective function, eqn 4, becomes *uniformly* close to the limiting objective function, eqn 3
 - Loosely, "uniform convergence" means there's an ε s.t. as $n \to \infty$ the distance at any θ between expressions 4 and 4 is less than ε
- In applications, make sure you know which *n* is being referred to: are you taking the number of firms to ∞? The number of markets?

Asymptotic Normality of GMM

• Under some (standard) assumptions,

$$\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)\overset{d}{\rightarrow}\mathcal{N}\left(0,V\right),$$

where

$$V = \left(\Gamma' C \Gamma\right)^{-1} \Gamma' C \Delta C \Gamma \left(\Gamma' C \Gamma\right)^{-1}$$

- $\Gamma = \mathbb{E}\left[\frac{\partial \psi}{\partial \theta}(x, \theta_0)\right]$: gradient of the moment condition w.r.t. to the parameters/Hessian of the unweighted objective function (size = $L \times K$)
- $\Delta = \mathbb{E} \left[\psi (x, \theta_0) \psi (x, \theta_0)' \right]$: covariance of the moment conditions at θ_0 (size = $L \times L$)
- Note that this is only one component of error. There is also:
 - sampling error (if your data is a sample of the population).
 - simulation error (if you compute the moments via simulation).

These will enter into the Δ term.

Erica Moszkowski

Standard Errors

As you'd expect, the sample analog is a consistent estimator of V:

$$\hat{\Gamma} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \psi(x, \hat{\theta})}{\partial \theta'}$$
$$\hat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \psi(x, \hat{\theta}) \psi(x, \hat{\theta})'$$
$$\hat{V} = (\hat{\Gamma}' \hat{C} \hat{\Gamma})^{-1} \hat{\Gamma}' \hat{C} \hat{\Delta} \hat{C} \hat{\Gamma} (\hat{\Gamma}' \hat{C} \hat{\Gamma})^{-1}$$

Therefore standard errors are:

$$SE = \sqrt{\frac{\operatorname{diag}(\hat{V})}{n}}$$

Ok, it's time to talk about \hat{C} .

Erica Moszkowski

The Optimal Weighting Matrix

- In the over-identified case, the weight matrix *C* assigns "importance" to satisfying the different moment conditions. We can choose whatever *C* we like, as long as it is positive definite.
- So, choose C to make our estimate as precise as possible that is, "minimize" V

Just-identified case, C = I $V = (\Gamma'C\Gamma)^{-1}\Gamma'C\Delta C\Gamma (\Gamma'C\Gamma)^{-1}$ $= \Gamma^{-1}C^{-1}\Gamma'^{-1}\Gamma'C\Delta C\Gamma (\Gamma^{-1}\Gamma'^{-1})$ $= (\Gamma'\Delta^{-1}\Gamma)^{-1}\Gamma'\Delta^{-1}\Delta \Delta^{-1}\Gamma (\Gamma'\Delta^{-1}\Gamma)^{-1}$ $= (\Gamma'\Delta^{-1}\Gamma)^{-1}$ $= (\Gamma'\Delta^{-1}\Gamma)^{-1}$

- Find the proof that $(\Gamma' \Delta^{-1} \Gamma)^{-1}$ is positive semi-definite in any econometrics text.
- Intuition: we want to more heavily weight the moments that are "precisely measured" (ie the least variable sample moments).

Erica Moszkowski

- From the last slide, we would like $C \propto \Delta^{-1} = \mathbb{E}[Cov(\psi(W_i, \theta_0))]^{-1}$.
- **Problem:** we don't know θ_0 .
- Solution: Form a consistent estimate $\hat{\Delta}$ using a consistent though inefficient estimate of θ_0 . This is good enough to achieve the optimal asymptotic variance.

2-step GMM:

- Step 1: Estimate $\hat{\theta}^{GMM1}$ by minimizing $Q_{C,n}(\theta)$ with an arbitrary choice of (positive semi-definite) C (usually the identity matrix)
- Step 2: Estimate the optimal weighting matrix as:

$$\hat{\Delta}^{-1} = \left\{ \mathbb{E}_n \left[\psi \left(w_i, \hat{\theta}^{GMM1} \right) \psi \left(w, \hat{\theta}^{GMM1} \right)' \right] \right\}^{-1}$$

and use this to then solve for $\hat{\theta}_{GMM2} = \arg \min_{\theta} Q_{\hat{\Delta}^{-1}}(\theta)$.

Erica Moszkowski

Consider the following OLS model:

$$Y_i = X'_i \theta_0 + \varepsilon_i, \quad \mathbb{E}\left(\varepsilon_i | X_i\right) = 0$$

Orthogonality of X_i and ε_i implies:

$$\mathbb{E}\left(Y_{i}-X_{i}^{\prime}\theta_{0}|X_{i}\right)=0 \Rightarrow \mathbb{E}\left[\left(Y_{i}-X_{i}^{\prime}\theta_{0}\right)h\left(X_{i}\right)\right]=0$$

for any function $h(\cdot)$, in particular h(X) = X. So choose

$$\psi\left(W_{i};\theta\right)=\left(Y_{i}-X_{i}^{\prime}\theta\right)X_{i}$$

and we get a moment conditon: $\mathbb{E}\left[\psi\left(W_{i};\theta_{0}\right)\right]=0.$

In a more general problem, using "optimal instruments" means optimal choice of $h(\cdot)$, an approximation to which we will discuss later.

Erica Moszkowski

Consider the following linear IV model, where X_i is a $K \times 1$ vector:

$$Y_i = X'_i \theta_0 + \varepsilon_i, \quad i = 1, \dots, n$$

You know how to do this with 2SLS, but let's set it up in the GMM framework.

- Suppose $\mathbb{E}[X_{ik}\varepsilon_i] \neq 0$ for some $k \in 1, \ldots, K$
- You have an $L \times 1$ vector Z_i of instruments such that $\mathbb{E}[Z_i \varepsilon_i] = 0$ and $Cov(Z_i, X_i) > 0$ (exclusion restriction + relevance hold)
- Let $W_i = (Y_i, X_i, Z_i)$
- Define $\psi(W_i, \theta_0) = Z_i \varepsilon_i = Z_i (Y_i X'_i \theta_0)$ so we can use GMM
- If only some elements of X_i are endogenous, Z_i will also include the remaining subset.
 - Notice: if dim $(z_i) = \dim(x_i)$, the model is just-identified; for dim $(Z_i) > \dim(X_i)$, it is over-identified.

Erica Moszkowski

Analytical solution to linear GMM

The sample moment is:

$$m_n(\theta) = \frac{1}{n} \sum_{i=1}^n z_i(y_i - x_i\theta) = (S_{zy} - S_{zx})\theta; \quad S_{zy} = \frac{1}{N} \sum_{t=1}^N z_t y_t, \quad S_{zx} = \frac{1}{N} \sum_{t=1}^N z_t x'_t$$

You can set $m_n = 0$ and solve:

$$\hat{\theta} = (S'_{ZX}CS_{ZX})^{-1}S'_{ZX}CS_{ZY}$$

The asymptotic variance is:

$$Cov(\hat{\theta}) = (S'_{ZX}CS_{ZX})^{-1}S'_{ZX}C\hat{S}CS_{ZX}(S'_{ZX}CS_{ZX})^{-1}, \quad \hat{S} = \frac{1}{N}\sum_{t=1}^{N} z_t z'_t \hat{\varepsilon}_t^2$$

and *C* is the weight matrix. The weight matrix can be estimated after the first-step via $\hat{C} = \hat{S}^{-1}$. $Cov(\hat{\theta})$ should be estimated in the second step with the second step \hat{S} .

 \cdot This is equivalent to 2SLS if errors are homoscedastic (but they may not be!)

Erica Moszkowski

Suppose instead, we have:

- Just market shares and characteristics of J goods
- Endogeneity of certain characteristics (need to instrument)
 hard to construct a likelihood.

Let $\delta_j = \beta X_j + \xi_j$, so that market shares (aggregated across all consumers *i*) are:

$$s_j = \frac{\exp(\delta_j)}{1 + \sum_k \exp(\delta_k)}$$
(5)

Given the share of an outside good s_0 , **?** says we can recover δ_i :

$$\delta_j = \log(s_j) - \log(s_0) \tag{6}$$

Given instruments Z_i we can form a familiar linear GMM moment condition:

$$\mathbb{E}[\xi_j Z_j] = \mathbb{E}[(\delta_j - \beta X_j) Z_j] = \mathbb{E}[(\log(s_j) - \log(s_0) - \beta X_j) Z_j] = 0$$
(7)

Erica Moszkowski

More generally, suppose we want to estimate α, β using the following moment condition:

$$\mathbb{E}(\xi_j h_j(Z)) = \mathbb{E}[(\delta_j - \beta X_j - \alpha p_j) h_j(Z)] = 0$$
(8)

Let $T(z)'T(z) = \Delta^{-1}$ (so T(z) normalizes the error matrix). ? tells us that the optimal set of instruments is:

$$h_j(z) = \mathbb{E}\left[\frac{\partial \xi_j(\theta_0)}{\partial \theta} | Z\right] T(z_j)$$
(9)

Intuition:

- Give larger weights to observations that generate ξ s whose computed values are very sensitive to the choice of θ

Erica Moszkowski

Approximating Optimal Instruments

Problem: it's hard to compute I

$$\mathbb{E}\left[\frac{\partial\xi_j(\theta_0)}{\partial\theta}|Z\right]$$

• We would need to compute the pricing equilibrium for different sequences of ξ_j , compute $\frac{\partial \xi_j}{\partial \theta}$ at that price, and integrate over all such sequences.

The approximation of **?**:

- 1. Obtain an initial estimate of $\hat{\alpha}, \hat{\beta}$ using any instruments.
- 2. Use the initial estimate to construct $\hat{\delta}_j = \hat{\beta} X_j + \hat{\alpha} p_j$, $(\xi = 0)$.
- 3. Solve the FOC of the model to find \hat{p}, \hat{s} as a function of $\alpha, \beta, \hat{\delta}, X$.
- 4. Get $\hat{\xi}_j(\alpha,\beta) = \hat{\delta}_j(\alpha,\beta) \beta X_j \alpha \hat{p}_j(\alpha,\beta)$, and take the derivatives $\frac{\partial \hat{\xi}_j}{\partial \alpha}, \frac{\partial \hat{\xi}_j}{\partial \beta} |\hat{\alpha}, \hat{\beta}|$ as an approximation to $E\left[\frac{\partial \xi_j(\theta_0)}{\partial \theta} |Z\right]$.

- Under a researcher's maintained assuptions a_0 , $\hat{\theta}^{GMM}$ is consistent and asymptotically normal
- But what if readers want to assess the bias in $\hat{\theta}^{GMM}$ if some other alternative $a \neq a_0$ were the case?
- ? provide an expression for the direction and magnitude of bias: For any local perturbation to the true model leading to the moments converging asymptotically to $\tilde{\psi}$ instead of 0, the first-order asymptotic bias to the estimates $\tilde{\theta}$ is:

$$\mathbb{E}[\tilde{\theta}] = \Lambda \mathbb{E}[\tilde{\psi}]$$

where $\Lambda = -(\Gamma' C \Gamma)^{-1} \Gamma' C$ is the sensitivity of estimated parameters to the model.

• For OLS, $\Lambda = -\Gamma^{-1} = -E[XX']$. Intuition = omitted variables: the bias from not including an endogenous variable is related to its covariance with included variables.

Erica Moszkowski

Outline

Review of Extremum Estimators

MLE

GMM

Comparing Estimators

Computation

Erica Moszkowski

Efficiency of Different Estimators

- We want to know whether our estimates are as precise as possible.
- MLE achieves the Cramer-Rao lower bound on variance among *all* unbiased estimators in the parametric setting:

$$Var\left(\hat{\theta}(X)\right) \geq \underbrace{\Im\left(\theta_{0}\right)^{-1}}_{Cramer-Rao bound}$$
 where $\underbrace{\Im\left(\theta\right)}_{Fisher Information matrix} = -\mathbb{E}\left[\frac{\partial^{2}}{\partial\theta\partial\theta'}\ln p\left(W|\theta\right)\right]$

• GMM attains the *semi*-parametric efficiency bound (?), which is the lower bound on variance for an estimator using only the information contained in the moment restrictions.

How restrictive is the estimator?

- MLE assumes the distribution of the data is known, up to a parameter. This is very restrictive!
- GMM makes assumptions about the *moments* of the distributions, which is less restrictive.
- For reference, non-parametric estimators (not discussed here) make almost no assumptions about the underlying distribution of the population.

When would you want to use each estimator?

- Use MLE when you have a fully specified distributional model and aren't worried about unmodeled endogeneity.
 - Remember, MLE assumes any variable *not* in your model is exogenous.
- Use GMM if your model is "partially specified" in the sense that you are making assumptions about orthogonality of residuals or optimality of behavior.
 - If you care about endogeneity of unobservables, you probably want to use GMM.

Trade off between strength of assumptions/amount of structure placed on the data and efficiency.

Outline

Review of Extremum Estimators

MLE

GMM

Comparing Estimators

Computation

Erica Moszkowsk

Implementing Extremum Estimators in Julia

```
using Optim
function linear_gmm(X,y; beta_start = 0.0, method = NelderMead())
gmm_obj(b) = (X'_*(y-X_*b))'_*(X_*(y-X_*b))
return optimize!(gmm_obj, beta_start, method)
end
bhat = linear_gmm(X,y, BFGS())
```

- y is a column vector and x is a matrix (rows = observations)
- method is a keyword argument for choosing your opimization routine (default = Nelder-Mead)
- optimize! takes a single-argument function and minimizes it, starting at beta_start, using the method you specify.
- gmm_obj is a *closure*: it's a function defined on 1 variable, baking in the values of x and y. Using closures carefully can make your code much cleaner.

Implementing Extremum Estimators in MATLAB

bet = fminsearch(@(b) (X'*(y-X*b))'*(X*(y-X*b)), beta_start, myopts)

- y is a column vector and x is a matrix (rows = observations)
- myopts is a struct containing lots of options
- The answer will be stored in a variable bet
- a(b) means the routine will attempt to minimize the expression
 (X'*(y-X*b'))'*(X'*(y-X*b')) with respect to b. This is called an *anonymous* function, but you can also use a named function as in the likelihood example
- The starting guess for **b** will be the value held in the vector **beta_start**
- The routine will follow the specifications in the options set "myopts", which is set before this using a command like

myopts = optimset('TolFun',10e-12, 'MaxFunEvals',1000000,'MaxIter',1000)

• Also see fmincon and fminunc

- $\cdot\,$ Necessary for Γ in asymptotic variance.
- Exact differentiation (analytic derivatives) is always preferred to numerical differentiation due to approximation error. This is also runs *much* faster.
 - Logit models (including BLP) do allow one to compute exact gradients just differentiate the logit!
- If not practical, approximate the gradient using finite differences with *h*:
 - Forward difference formula:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

• Symmetric difference formula (more accurate):

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

• See Judd (1998, Ch. 7) for details.

Erica Moszkowski

Where to go for more info

- I will post (with permission) Mikkel Plagborg-Møller's notes on GMM, which you may find useful.
- Also see ? for a more formal overview

References i