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Identification of Structural Parameters

• A structrural parameter is one that is invariant to a particular set of
counterfacturals the researcher is interested in.

• Identification can refer to a lot of things (see Lewbel, JEL forthcoming), but at its
most basic, it means that parameters or features of a model are uniquely
determined from the observable population that generates the data.

• Identification is a statement about a model in the population. It is not about the
data you have!

• Identification is obtained by imposing exclusions or other kinds of restrictions (read:
assumptions) on your data.
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Extremum Estimators

“Extremum estimators are a wide class of estimators for parametric models
that are calculated through maximization (or minimization) of a certain
objective function, which depends on the data.” – Wikipedia

Setup of an extremum estimator:

• Parameter space: Θ ⊂ RK . K must be finite and independent of sample size.
• Data: Wi = (Yi, Xi) for observations i = {1, . . . ,n}, iid
• Objective function: Qn(θ0)

The estimate, θ̂, is the value that minimizes the objective function:

θ̂ = argmin
t
Qn(t)
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Identification and Consistency of an Extremum Estimator

Identificaton:

• Condititions for identification:
• Θ is compact
• Q(θ) is continuous in θ
• θ0 uniquely minimizes Q(θ)

Consistency:

• An estimator is consistent if
θ̂

p−→ θ0

or, more formally,
lim
n→∞

Pr
[∥∥∥θ̂ − θ0

∥∥∥ > ε
]
= 0, ∀ε > 0.
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Notation

• For distributions, upper case letters denote c.d.f.s and lower case letters denote
p.d.f.s.

• For random variables, upper case letters denote the random variable itself and
lower case letters denote the realization of the random variable (e.g., data before
it is observed is Wi; once it’s observed, it’s wi)

• For parameters, the subscript 0 denotes the true value of the parameter and a ·̂
denotes an estimate. No annotation denotes a generic argument to a function.
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Maximum Likelihood (MLE)

1. Let (W1, . . . ,Wn) be iid random variables, where Wi has distribution F. The
realizations (w1, . . . ,wn) correspond to the observed data.

2. Researcher picks a family of distributions, Fθ , indexed by a parameter θ ∈ Θ

• For each observation, pdf f (wi|θ) is the probability that you draw observation Wi = wi
from a population distributed according to Fθ

3. The likelihood of observing your exact dataset is:

L(θ) =
n∏
i=1

f (wi|θ)

4. The maximum likelihood estimate, θ̂MLE , of θ is the value that makes the observed
data the “most probable” according to your model:

θ̂MLE = argmax
t

L(θ)
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Identification of MLE

As we know, MLE is identified if the likelihood is uniquely maximized at the true value;
that is:

argmax
θ

L (θ) = θ′ ⇐⇒ θ′ = θ0
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Computation of MLE

• We usually maximize the log likelihood, because summation is faster than
multiplication:

θ̂MLE = argmax
t

logL(θ) =
n∑
i=1

log f (wi|θ)

• Most programming languages’ optimization functions do minimization rather than
maximization: don’t forget to multiply the log-likelihood by −1!

• I recommend writing a function, likelihood , that computes the log-likelihood for
you. This makes your code much cleaner.

% In its own file:
function likelihood(theta,w) = sum(log(normpdf(w,theta)))
% When you estimate:
theta_hat = fminsearch(@(t) likelihood(t,w), theta_start)
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Generalized Method of Moments (GMM): Setup

• The researcher specifies a model that implies the moment condition

E [ψ (Wi, θ0)] = 0, (1)

where ψ is known and has dimension L.
• For us to be able (with infinite data) to tell a false θ apart from the true value, we
need

E [ψ(Wi, θ)] 6= 0 for all θ 6= θ0 (2)

• Identification also requires L ≥ K (i.e., more moment conditions than parameters
(θ1, . . . , θK)).

• The sample analog of the moment E[ψ (Wi, θ)] is:

mn(θ) =
1
n

n∑
i=1

ψ(wi, θ) ∈ RL
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Defining the Estimator

• Since θ0 is the only θ that satisfies E[ψ(Wi, θ)] = 0, we might want to look for an
estimator θ̂GMM that satisfies the system of L equations in K unknowns:

mn(θ̂
GMM) = 0

• If L = K then this system typically has a solution
• But if L > K (the over-identified case), a solution may not exist.
 pick θ̂GMM to satisfy mn(θ̂

GMM) ≈ 0 as closely as possible.
• The GMM objective function is:

QGMM(θ) = argmin
θ

E [ψ (w; θ)]′ CE [ψ (w; θ)] (3)

• This is like the “sum of squared residuals”, but C lets us be more flexible
• The GMM estimate, θ̂GMM, is the value that minimizes the sample analog of eqn 3:

θ̂GMM = argmin
θ

QGMMC,n (θ) = mn(θ)
′Ĉmn(θ) (4)
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Familiar Examples of Moment Conditions

• Regression: Yi = X′iθ + εi
E [Xiεi] = 0.

• Instrumental Variables: Yi = X′iθ + εi, E[X′iεi] 6= 0

E [Ziεi] = 0.

• Maximum likelihood: maxθ L(Yi|Xi, θ)

E
[
∂ logL(Yi|Xi, θ)

∂θ

]
= 0.

Erica Moszkowski Review of Estimation Methods 14 / 39



Typical moment conditions in IO applications

1. Orthogonality conditions:
• Examine your model for zero-correlation conditions.
• Example: Any variable Z that is uncorrelated with unobserved heterogeneity in
product characteristics, ξ, can be used as an instrument. The moment condition is

E[Z′ξ] = 0

2. First order conditions:
• Best-Response/Nash conditions: Equilibrium conditions which we assume to hold
on the supply side, such as Differentiated Products Bertrand Equilibrium:

max s(p)︸︷︷︸
share

[p− c]︸ ︷︷ ︸
markup

=⇒ FOC: s′(p)[p− c] + s(p) = 0︸ ︷︷ ︸
moment condition

• Consumer optimality: Consumer may optimally stockpile, for example, based on
sales frequencies and amounts.
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Typical moment conditions in IO applications, ctd

3. Moment matching:
Lots of papers do the following thing:

1. Write up a model with some parameter vector θ.
2. Determine how the model implies moments of the data should depend on θ.

• You can derive this relationship analytically or by simulation.
• Example: The probability that an individual chooses an insurance plan is a known
function of their risk aversion (same for everyone) and health risk (drawn from some
parameterized distribution). Simulate a lot of individuals’ choice probabilities, then
aggregate.

3. Pick θ̂ such that the model-implied moments, match the empirical moments as
closely as possible (using whatever metric you like, often sum-of-squares)
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Identification of GMM

Recall that an extremum estimator is identified iff

θ = argmin
t
QGMM(t) ⇐⇒ θ = θ0

Therefore, GMM is identified if:

1. E [ψ (Wi; θ)] = 0 ⇐⇒ θ = θ0

• It’s generally hard to show E[ψ(Wi, θ0)] = 0. Many papers don’t actually prove their
model is identified.

2. the weight matrix C is nonsingular, and
3. L ≥ K
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Consistency of GMM

• For GMM, pointwise convergence of the sample objective function to the
population objective function is easy:

• mn(θ)
p→ E[ψ(Wi, θ)] by the law of large numbers

• Ĉ → C by assumption
• So for all θ ∈ Θ, mn(θ)

′Ĉmn(θ)
p→ E[ψ(Wi, θ)]CE[ψ(Wi, θ)]

• There are stronger conditions under which the sample GMM objective function,
eqn 4, becomes uniformly close to the limiting objective function, eqn 3

• Loosely, “uniform convergence” means there’s an ε s.t. as n→ ∞the distance at any
θ between expressions 4 and 4 is less than ε

• In applications, make sure you know which n is being referred to: are you taking
the number of firms to∞? The number of markets?
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Asymptotic Normality of GMM

• Under some (standard) assumptions,
√
n
(
θ̂ − θ0

)
d−→ N (0, V) ,

where
V =

(
Γ′CΓ

)−1
Γ′C∆CΓ

(
Γ′CΓ

)−1
• Γ = E

[
∂ψ
∂θ (x, θ0)

]
: gradient of the moment condition w.r.t. to the

parameters/Hessian of the unweighted objective function (size = L× K)
• ∆ = E

[
ψ (x, θ0)ψ (x, θ0)′

]
: covariance of the moment conditions at θ0 (size = L× L)

• Note that this is only one component of error. There is also:
• sampling error (if your data is a sample of the population).
• simulation error (if you compute the moments via simulation).

These will enter into the ∆ term.
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Standard Errors

As you’d expect, the sample analog is a consistent estimator of V :

Γ̂ =
1
n

n∑
i=1

∂ψ(x, θ̂)
∂θ′

∆̂ =
1
n

n∑
i=1

ψ(x, θ̂)ψ(x, θ̂)′

V̂ = (Γ̂′ĈΓ̂)−1Γ̂′Ĉ∆̂ĈΓ̂(Γ̂′ĈΓ̂)−1

Therefore standard errors are:
SE =

√
diag(V̂)

n

Ok, it’s time to talk about Ĉ.
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The Optimal Weighting Matrix

• In the over-identified case, the weight matrix C assigns “importance” to satisfying
the different moment conditions. We can choose whatever C we like, as long as it
is positive definite.

• So, choose C to make our estimate as precise as possible – that is, “minimize” V

Just-identified case, C = I Over-identified case, C = ∆−1

V = (Γ′CΓ)−1 Γ′C∆CΓ (Γ′CΓ)−1 V = (Γ′CΓ)−1 Γ′C∆CΓ (Γ′CΓ)−1

= Γ−1C−1Γ′−1Γ′C∆CΓΓ−1C−1Γ′−1 =
(
Γ′∆−1Γ

)−1
Γ′∆−1∆∆−1Γ

(
Γ′∆−1Γ

)−1
= Γ−1∆Γ′−1 =

(
Γ′∆−1Γ

)−1
=

(
Γ′∆−1Γ

)−1
• Find the proof that (Γ′∆−1Γ)−1 is positive semi-definite in any econometrics text.
• Intuition: we want to more heavily weight the moments that are “precisely
measured” (ie the least variable sample moments).
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2-Step GMM

• From the last slide, we would like C ∝ ∆−1 = E[Cov(ψ(Wi, θ0))]
−1.

• Problem: we don’t know θ0.
• Solution: Form a consistent estimate ∆̂ using a consistent though inefficient
estimate of θ0. This is good enough to achieve the optimal asymptotic variance.

2-step GMM:

• Step 1: Estimate θ̂GMM1 by minimizing QC,n (θ) with an arbitrary choice of (positive
semi-definite) C (usually the identity matrix)

• Step 2: Estimate the optimal weighting matrix as:

∆̂−1 =

{
En

[
ψ
(
wi, θ̂GMM1

)
ψ
(
w, θ̂GMM1

)′
]}−1

and use this to then solve for θ̂GMM2 = argminθ Q∆̂−1 (θ).
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Two-Step GMM: OLS example

Consider the following OLS model:

Yi = X′iθ0 + εi, E (εi|Xi) = 0

Orthogonality of Xi and εi implies:

E
(
Yi − X′iθ0|Xi

)
= 0⇒ E

[(
Yi − X′iθ0

)
h (Xi)

]
= 0

for any function h (·), in particular h (X) = X. So choose

ψ (Wi; θ) =
(
Yi − X′iθ

)
Xi

and we get a moment conditon: E [ψ (Wi; θ0)] = 0.

In a more general problem, using “optimal instruments” means optimal choice of h (·),
an approximation to which we will discuss later.
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Two-Step GMM: Linear IV example

Consider the following linear IV model, where Xi is a K × 1 vector:

Yi = X′iθ0 + εi, i = 1, . . . ,n

You know how to do this with 2SLS, but let’s set it up in the GMM framework.

• Suppose E[Xikεi] 6= 0 for some k ∈ 1, . . . , K
• You have an L× 1 vector Zi of instruments such that E[Ziεi] = 0 and Cov(Zi, Xi) > 0
(exclusion restriction + relevance hold)

• Let Wi = (Yi, Xi, Zi)
• Define ψ(Wi, θ0) = Ziεi = Zi(Yi − X′iθ0) so we can use GMM
• If only some elements of Xi are endogenous, Zi will also include the remaining
subset.

• Notice: if dim (zi) = dim (xi), the model is just-identified; for dim (Zi) > dim (Xi), it is
over-identified.
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Analytical solution to linear GMM

The sample moment is:

mn(θ) =
1
n

n∑
i=1

zi(yi − xiθ) = (Szy − Szx)θ; Szy =
1
N

N∑
t=1

ztyt, Szx =
1
N

N∑
t=1

ztx′t

You can set mn = 0 and solve:
θ̂ = (S′zxCSzx)−1S′zxCSzy

The asymptotic variance is:

Cov(θ̂) = (S′zxCSzx)−1S′zxCŜCSzx(S′zxCSzx)−1, Ŝ =
1
N

N∑
t=1

ztz′tε̂2t

and C is the weight matrix. The weight matrix can be estimated after the first-step via
Ĉ = Ŝ−1. Cov(θ̂) should be estimated in the second step with the second step Ŝ.

• This is equivalent to 2SLS if errors are homoscedastic (but they may not be!)
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Logit Example: Another Linear GMM!

Suppose instead, we have:
• Just market shares and characteristics of J goods
• Endogeneity of certain characteristics (need to instrument)
 hard to construct a likelihood.

Let δj = βXj + ξj, so that market shares (aggregated across all consumers i) are:

sj =
exp(δj)

1+
∑

k exp(δk)
(5)

Given the share of an outside good s0, ? says we can recover δj:

δj = log(sj)− log(s0) (6)

Given instruments Zj we can form a familiar linear GMM moment condition:

E[ξjZj] = E[(δj − βXj)Zj] = E[(log(sj)− log(s0)− βXj)Zj] = 0 (7)
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An Approximation to Optimal Instruments

More generally, suppose we want to estimate α, β using the following moment
condition:

E(ξjhj(Z)) = E[(δj − βXj − αpj)hj(Z)] = 0 (8)

Let T(z)′T(z) = ∆−1 (so T(z) normalizes the error matrix). ? tells us that the optimal
set of instruments is:

hj(z) = E
[
∂ξj(θ0)

∂θ
|Z
]
T(zj) (9)

Intuition:

• Give larger weights to observations that generate ξs whose computed values are
very sensitive to the choice of θ
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Approximating Optimal Instruments

Problem: it’s hard to compute E
[
∂ξj(θ0)
∂θ |Z

]
• We would need to compute the pricing equilibrium for different sequences of ξj,
compute ∂ξj

∂θ at that price, and integrate over all such sequences.

The approximation of ?:

1. Obtain an initial estimate of α̂, β̂ using any instruments.
2. Use the initial estimate to construct δ̂j = β̂Xj + α̂pj, (ξ = 0).
3. Solve the FOC of the model to find p̂, ŝ as a function of α, β, δ̂, X.

4. Get ξ̂j(α, β) = δ̂j(α, β)− βXj − αp̂j(α, β), and take the derivatives
∂ξ̂j
∂α ,

∂ξ̂j
∂β |α̂, β̂ as an

approximation to E
[
∂ξj(θ0)
∂θ |Z

]
.
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Is GMM a “black box”?

• Under a researcher’s maintained assuptions a0, θ̂GMM is consistent and
asymptotically normal

• But what if readers want to assess the bias in θ̂GMM if some other alternative
a 6= a0 were the case?

• ? provide an expression for the direction and magnitude of bias: For any local
perturbation to the true model leading to the moments converging asymptotically
to ψ̃ instead of 0, the first-order asymptotic bias to the estimates θ̃ is:

E[θ̃] = ΛE[ψ̃]

where Λ = −(Γ′CΓ)−1Γ′C is the sensitivity of estimated parameters to the model.
• For OLS, Λ = −Γ−1 = −E[XX′]. Intuition = omitted variables: the bias from not
including an endogenous variable is related to its covariance with included variables.
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Efficiency of Different Estimators

• We want to know whether our estimates are as precise as possible.
• MLE achieves the Cramer-Rao lower bound on variance among all unbiased
estimators in the parametric setting:

Var
(
θ̂(X)

)
≥ = (θ0)

−1︸ ︷︷ ︸
Cramer-Rao bound

where = (θ)︸ ︷︷ ︸
Fisher Information matrix

= −E
[

∂2

∂θ∂θ′
lnp (W|θ)

]

• GMM attains the semi-parametric efficiency bound (?), which is the lower bound
on variance for an estimator using only the information contained in the moment
restrictions.
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How restrictive is the estimator?

• MLE assumes the distribution of the data is known, up to a parameter. This is very
restrictive!

• GMM makes assumptions about the moments of the distributions, which is less
restrictive.

• For reference, non-parametric estimators (not discussed here) make almost no
assumptions about the underlying distribution of the population.
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When would you want to use each estimator?

• Use MLE when you have a fully specified distributional model and aren’t worried
about unmodeled endogeneity.

• Remember, MLE assumes any variable not in your model is exogenous.
• Use GMM if your model is “partially specified” in the sense that you are making
assumptions about orthogonality of residuals or optimality of behavior.

• If you care about endogeneity of unobservables, you probably want to use GMM.

Trade off between strength of assumptions/amount of structure placed on the data
and efficiency.
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Implementing Extremum Estimators in Julia

using Optim
function linear_gmm(X,y; beta_start = 0.0, method = NelderMead())
gmm_obj(b) = (X'*(y−X*b))'*(X*(y−X*b))
return optimize!(gmm_obj, beta_start, method)

end
bhat = linear_gmm(X,y, BFGS())

• y is a column vector and x is a matrix (rows = observations)
• method is a keyword argument for choosing your opimization routine (default =
Nelder-Mead)

• optimize! takes a single-argument function and minimizes it, starting at
beta_start , using the method you specify.

• gmm_obj is a closure: it’s a function defined on 1 variable, baking in the values of
X and y . Using closures carefully can make your code much cleaner.
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Implementing Extremum Estimators in MATLAB

bet = fminsearch(@(b) (X'*(y−X*b))'*(X*(y−X*b)), beta_start, myopts)

• y is a column vector and x is a matrix (rows = observations)
• myopts is a struct containing lots of options
• The answer will be stored in a variable bet

• @(b) means the routine will attempt to minimize the expression
(X'*(y−X*b'))'*(X'*(y−X*b')) with respect to b . This is called an anonymous
function, but you can also use a named function as in the likelihood example

• The starting guess for b will be the value held in the vector beta_start

• The routine will follow the specifications in the options set “myopts”, which is set
before this using a command like
myopts = optimset('TolFun',10e−12, 'MaxFunEvals',1000000,'MaxIter',1000)

• Also see fmincon and fminunc
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Computing Gradients

• Necessary for Γ in asymptotic variance.
• Exact differentiation (analytic derivatives) is always preferred to numerical
differentiation due to approximation error. This is also runs much faster.

• Logit models (including BLP) do allow one to compute exact gradients – just
differentiate the logit!

• If not practical, approximate the gradient using finite differences with h:
• Forward difference formula:

f ′ (x) ≈ f (x + h)− f (x)
h

• Symmetric difference formula (more accurate):

f ′ (x) ≈ f (x + h)− f (x − h)
2h

• See Judd (1998, Ch. 7) for details.
Erica Moszkowski Review of Estimation Methods 37 / 39



Where to go for more info

• I will post (with permission) Mikkel Plagborg-Møller’s notes on GMM, which you
may find useful.

• Also see ? for a more formal overview
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