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Identification of Structural Parameters

- A structrural parameter is one that is invariant to a particular set of
counterfacturals the researcher is interested in.

- Identification can refer to a lot of things (see Lewbel, JEL forthcoming), but at its
most basic, it means that parameters or features of a model are uniquely
determined from the observable population that generates the data.

- Identification is a statement about a model in the population. It is not about the
data you have!

- ldentification is obtained by imposing exclusions or other kinds of restrictions (read:
assumptions) on your data.
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Extremum Estimators

“Extremum estimators are a wide class of estimators for parametric models
that are calculated through maximization (or minimization) of a certain
objective function, which depends on the data.” — Wikipedia

Setup of an extremum estimator:

- Parameter space: © ¢ RX. K must be finite and independent of sample size.
- Data: W; = (V;, X;) for observations i = {1,...,n}, iid
- Objective function: Qn(6o)

The estimate, @, is the value that minimizes the objective function:

0 =arg mtin Qn(t)
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Identification and Consistency of an Extremum Estimator

Identificaton:

- Condititions for identification:

- ©is compact
- Q(0) is continuous in 6
- 0y uniquely minimizes Q(0)

Consistency:

- An estimator is consistent if
g2 0,

or, more formally,

HmPrW@—%H>4::QVa>O

n—oo
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- For distributions, upper case letters denote c.d.f.s and lower case letters denote
p.dfs.

- For random variables, upper case letters denote the random variable itself and
lower case letters denote the realization of the random variable (e.g., data before
it is observed is W;; once it's observed, it's w;)

- For parameters, the subscript 0 denotes the true value of the parameter and a *
denotes an estimate. No annotation denotes a generic argument to a function.
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Maximum Likelihood (MLE)

1. Let (Wh,...,W,) be iid random variables, where W; has distribution F. The

realizations (ws, ..., wp) correspond to the observed data.
2. Researcher picks a family of distributions, Fy, indexed by a parameter 6 € ©
- For each observation, pdf f(w;|0) is the probability that you draw observation W; = w;
from a population distributed according to Fg

3. The likelihood of observing your exact dataset is:

n

£(0) = [1f(wilo)

i—1
4. The maximum likelihood estimate, 8MLE, of § is the value that makes the observed
data the “most probable” according to your model:

OME = arg max L(0)
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Identification of MLE

As we know, MLE is identified if the likelihood is uniquely maximized at the true value;
that is:

arg m9ax£(6’) =0 < 0 =6,
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Computation of MLE

- We usually maximize the log likelihood, because summation is faster than
multiplication:

n
GME = arg mtaxlog L(0) = Z log f(w;|0)
=1

- Most programming languages’ optimization functions do minimization rather than
maximization: don't forget to multiply the log-likelihood by —1!

- | recommend writing a function, likelihood , that computes the log-likelihood for
you. This makes your code much cleaner.

% In its own file:

function likelihood(theta,w) = sum(log(normpdf(w,theta)))
% When you estimate:

theta_hat = fminsearch(@(t) likelihood(t,w), theta_start)
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Generalized Method of Moments (GMM): Setup

- The researcher specifies a model that implies the moment condition

E [ (W, 60)] = 0, (1)
where 1 is known and has dimension L.
- For us to be able (with infinite data) to tell a false # apart from the true value, we

need
E [y (W;, 0)] # 0 for all 6 # 6, (2)
- Identification also requires L > K (i.e, more moment conditions than parameters
(61, .-, 6k)).

- The sample analog of the moment E[¢ (W, )] is:

mo(6) = = 3" h(wi,6) € B
=1
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Defining the Estimator

- Since 6, is the only 0 that satisfies E[/(W;, 0)] = 0, we might want to look for an
estimator §5MM that satisfies the system of L equations in K unknowns:

ma(§%M) = 0
- If L = K then this system typically has a solution

- Butif L > K (the over-identified case), a solution may not exist.
~ pick §°MM 1o satisfy m,(#°MM) ~ 0 as closely as possible.

- The GMM objective function is:
Q"M(9) = argminE [ (w; 0)]' CE [¢ (w; 0)] (3)
0

- This is like the “sum of squared residuals”, but C lets us be more flexible
- The GMM estimate, MM is the value that minimizes the sample analog of eqn 3:

oMM —argmanGMM( ) = mn(6)' Cmn(0) (4)
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Familiar Examples of Moment Conditions

- Regression: Y; = X0 +¢;
E [X,e,-] =0.

+ Instrumental Variables: Y; = X/6 + ¢;, E[X[g;] # 0
E [Z,‘E,‘] = 0.
- Maximum likelihood: maxy L(Y;|X;,0)

dlog L(YiX;, 0)
El———————=| =0.
{ 06
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Typical moment conditions in 10 applications

1. Orthogonality conditions:
- Examine your model for zero-correlation conditions.
- Example: Any variable Z that is uncorrelated with unobserved heterogeneity in
product characteristics, &, can be used as an instrument. The moment condition is

E[Z¢]1=0

2. First order conditions:
- Best-Response/Nash conditions: Equilibrium conditions which we assume to hold
on the supply side, such as Differentiated Products Bertrand Equilibrium:

maxs(p)[p —c] = FOC: s'(p)[p —c] +s(p) =0
~ ——
share markup moment condition

- Consumer optimality: Consumer may optimally stockpile, for example, based on
sales frequencies and amounts.
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Typical moment conditions in 10 applications, ctd

3. Moment matching:
Lots of papers do the following thing:

1. Write up a model with some parameter vector 6.
2. Determine how the model implies moments of the data should depend on 6.
- You can derive this relationship analytically or by simulation.
- Example: The probability that an individual chooses an insurance plan is a known
function of their risk aversion (same for everyone) and health risk (drawn from some

parameterized distribution). Simulate a lot of individuals' choice probabilities, then
aggregate.

3. Pick 6 such that the model-implied moments, match the empirical moments as
closely as possible (using whatever metric you like, often sum-of-squares)
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Identification of GMM

Recall that an extremum estimator is identified iff

0 = arg min QMM(t) «—= 6 =6

Therefore, GMM is identified if:

1. E[’(/J(W,,H)] =0 <= 9:90
- It's generally hard to show E[¢(W;, 8p)] = 0. Many papers don't actually prove their
model is identified.

2. the weight matrix C is nonsingular, and
3.L>K
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Consistency of GMM

- For GMM, pointwise convergence of the sample objective function to the
population objective function is easy:

- mu(6) B E[p(W;, 0)] by the law of large numbers
- C — C by assumption
- Soforall @ € ©, m,(0) Cm,(6) LA E[y(W;, 0)]CE[»(W;, 8)]
- There are stronger conditions under which the sample GMM objective function,
eqn 4, becomes uniformly close to the limiting objective function, eqn 3

- Loosely, “uniform convergence” means there's an e s.t. as n — oothe distance at any
0 between expressions 4 and 4 is less than ¢

- In applications, make sure you know which n is being referred to: are you taking
the number of firms to co? The number of markets?

Erica Moszkowski
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Asymptotic Normality of GMM

- Under some (standard) assumptions,
ﬁ(éfeo) 94 N(0,V),
where
v = (r'cr)”"reacr (r'er)™
- T=E [61” (x, 90)}: gradient of the moment condition w.rt. to the

parameters/Hessian of the unweighted objective function (size = L x K)

- A =E [¢(x,00) ¢ (x,00)']: covariance of the moment conditions at 6 (size = L x L)
- Note that this is only one component of error. There is also:
- sampling error (if your data is a sample of the population).
- simulation error (if you compute the moments via simulation).
These will enter into the A term.
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Standard Errors

As you'd expect, the sample analog is a consistent estimator of V:
L1 = (X, 0)
=02 "

i=1

Therefore standard errors are:

0k, it's time to talk about C.
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The Optimal Weighting Matrix

- In the over-identified case, the weight matrix C assigns “importance” to satisfying
the different moment conditions. We can choose whatever C we like, as long as it
is positive definite.

- So, choose C to make our estimate as precise as possible - that is, “minimize” V

Just-identified case, C =/ ‘ Over-identified case, C = A~

V = (r'cr)~"r'cAcr (r'er)y~' | v = (r'cr)-'r’cacr(rer)”™

= rcIr=IrcAcrTe ' | = (PATT) T AT AATTT (FATTT) T
—r'ar= = (Fa-n)™ — (A=)

- Find the proof that (I"A~'T)~" is positive semi-definite in any econometrics text.

- Intuition: we want to more heavily weight the moments that are “precisely
measured” (ie the least variable sample moments).
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2-Step GMM

- From the last slide, we would like C oc A~ = E[Cov(¥:(W;, 65))] .

- Problem: we don’t know 6.

- Solution: Form a consistent estimate A using a consistent though inefficient
estimate of y. This is good enough to achieve the optimal asymptotic variance.

2-step GMM:

- Step 1: Estimate §°M™' by minimizing Qc , () with an arbitrary choice of (positive
semi-definite) C (usually the identity matrix)
- Step 2: Estimate the optimal weighting matrix as:

A= {En [w (Wl_’é‘G/VIM1> " <W7 éGMM1)/:| }_1

and use this to then solve for dgum, = arg ming Q4 1 (6).
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Two-Step GMM: OLS example

Consider the following OLS model:
Yi =Xi6o+¢i, E(egX)=0
Orthogonality of X; and ¢; implies:
E (¥i = Xif0[X;) = 0 = E [(Y; — X{6o) h (X;)] =0
for any function h (+), in particular h (X) = X. So choose
U (W;; 0) = (Y,- —XfH) Xi
and we get a moment conditon: E [¢ (W;; 60)] = 0.

In a more general problem, using “optimal instruments” means optimal choice of h(-),
an approximation to which we will discuss later.
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Two-Step GMM: Linear IV example

Consider the following linear IV model, where X; is a K x 1 vector:
Y,':X,(Qo—l-é‘,‘, I=1,...,n
You know how to do this with 2SLS, but let's set it up in the GMM framework.

- Suppose E[Xjei] # 0 forsome ke 1,...,K

- You have an L x 1 vector Z; of instruments such that E[Zie;] = 0 and Cov(Z;, X;) > 0
(exclusion restriction + relevance hold)

- let W, = (Y,‘,X,‘,Z,‘)

+ Define ¢(W;, 00) = Zje; = Zi(Y; — X!6p) so we can use GMM

- If only some elements of X; are endogenous, Z; will also include the remaining
subset.

- Notice: if dim (z;) = dim (x;), the model is just-identified; for dim (Z;) > dim (X;), it is
over-identified.
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Analytical solution to linear GMM

The sample moment is:

N
ZZ = (Szy — S)b; Sz = szyta Spx = ZZIX{
t:'l

You can set my = 0 and solve:
0 = (SQXCSZX)_1SQXCSZV

The asymptotic variance is:

Cov(f) = (S5, CSz) 'S, C5CS (S, CSox) ", Zztzgég
and C is the weight matrix. The weight matrix can be estimated after the first-step via
¢ = 5. Cov(A) should be estimated in the second step with the second step .

- This is equivalent to 2SLS if errors are homoscedastic (but they may not be!)
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Logit Example: Another Linear GMM!

Suppose instead, we have:
- Just market shares and characteristics of J goods
- Endogeneity of certain characteristics (need to instrument)
~ hard to construct a likelihood.

Let 6; = BX; + &, so that market shares (aggregated across all consumers i) are:
exp(d;)

EREES =0y o
Given the share of an outside good so, ? says we can recover d;:
8 = log(sj) — log(so) (6)
Given instruments Z; we can form a familiar linear GMM moment condition:
E[§Z)] = E[(6 — £%)Z)] = E[(log(s;) — log(s) — £%)Z] = 0 %
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An Approximation to Optimal Instruments

More generally, suppose we want to estimate «, § using the following moment
condition:

E(&h)(2)) = E[(5; — BX; — ap))hi(2)] = 0 (8)

Let T(2)'T(z) = A" (so T(z) normalizes the error matrix). ? tells us that the optimal
set of instruments is:

9¢(6o)
00

hi(z) =E [ \z] T(z) (9)

Intuition:

- Give larger weights to observations that generate £€s whose computed values are
very sensitive to the choice of 6
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Approximating Optimal Instruments

Problem: it's hard to compute E [% () |Z}

- We would need to compute the pricing equilibrium for different sequences of ¢,

%;

compute 7 at that price, and integrate over all such sequences.

The approximation of ?:

= W N

Obtain an initial estimate of &, A using any instruments.

Use the initial estimate to construct §; = 3X; + apj, (€ = 0).

Solve the FOC of the model to find p, § as a function of a, 3,4, X.

Get §j(a, B) = §(a, B) — BX; — apj(, B), and take the derivatives ai, %\a A as an
approximation to £ [6’5’(90 \Z}
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Is GMM a “black box"?

- Under a researcher’s maintained assuptions ao, GGMM is consistent and
asymptotically normal

- But what if readers want to assess the bias in 5™ if some other alternative
a # ag were the case?

- ? provide an expression for the direction and magnitude of bias: For any local
perturbation to the true model leading to the moments converging asymptotically
to ¢ instead of 0, the first-order asymptotic bias to the estimates 4 is:

E[f] = AE[Y]

where A = —(I"CM)~'T'C is the sensitivity of estimated parameters to the model.
- For OLS, A = —I =" = —E[XX’]. Intuition = omitted variables: the bias from not
including an endogenous variable is related to its covariance with included variables.
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Comparing Estimators
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Efficiency of Different Estimators

- We want to know whether our estimates are as precise as possible.

- MLE achieves the Cramer-Rao lower bound on variance among all unbiased
estimators in the parametric setting:

A~ 82
var (H(X)) > I(6)"  where 3 (6) =~ _E [ Inp (vv|9)]
NG NlSe 9000’
Cramer-Rao bound Fisher Information matrix

- GMM attains the semi-parametric efficiency bound (?), which is the lower bound
on variance for an estimator using only the information contained in the moment
restrictions.
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How restrictive is the estimator?

- MLE assumes the distribution of the data is known, up to a parameter. This is very
restrictive!

- GMM makes assumptions about the moments of the distributions, which is less
restrictive.

- For reference, non-parametric estimators (not discussed here) make almost no
assumptions about the underlying distribution of the population.
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When would you want to use each estimator?

- Use MLE when you have a fully specified distributional model and aren’t worried
about unmodeled endogeneity.

- Remember, MLE assumes any variable not in your model is exogenous.

- Use GMM if your model is “partially specified” in the sense that you are making
assumptions about orthogonality of residuals or optimality of behavior.

- If you care about endogeneity of unobservables, you probably want to use GMM.

Trade off between strength of assumptions/amount of structure placed on the data
and efficiency.
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Computation
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Implementing Extremum Estimators in Julia

using Optim

function linear_gmm(X,y; beta_start = 0.0, method = NelderMead())
gmm_obj(b) = (X', (y—Xyxb))'x(Xs(y—Xsb))
return optimize!(gmm_obj, beta_start, method)

end

bhat = linear_gmm(X,y, BFGS())

y is a column vector and x is a matrix (rows = observations)

method is a keyword argument for choosing your opimization routine (default =
Nelder-Mead)

optimize! takes a single-argument function and minimizes it, starting at
beta_start, using the method you specify.

gmm_obj is a closure: it's a function defined on 1 variable, baking in the values of
X and y. Using closures carefully can make your code much cleaner.
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Implementing Extremum Estimators in MATLAB

bet = fminsearch(@(b) (X',(y—Xxb))'«+(Xx(y—X4b)), beta_start, myopts)
y is a column vector and x is a matrix (rows = observations)

myopts IS a struct containing lots of options
- The answer will be stored in a variable bet

@a(b) means the routine will attempt to minimize the expression

(X' % (y=Xgb ")) ' o (X' x(y—X4b')) with respectto b. This is called an anonymous

function, but you can also use a named function as in the likelihood example
- The starting guess for b will be the value held in the vector beta_start

- The routine will follow the specifications in the options set “myopts”, which is set
before this using a command like

myopts = optimset('TolFun',10e—12, 'MaxFunEvals',1000000, 'MaxIter',1000)
- Also see fmincon and fminunc

Erica Moszkowski
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Computing Gradients

- Necessary for I' in asymptotic variance.
- Exact differentiation (analytic derivatives) is always preferred to numerical
differentiation due to approximation error. This is also runs much faster.
- Logit models (including BLP) do allow one to compute exact gradients - just
differentiate the logit!
- If not practical, approximate the gradient using finite differences with h:

- Forward difference formula:
X+ h)—f(x
O Rk
- Symmetric difference formula (more accurate):

£ = LN S (=)

2h
- See Judd (1998, Ch. 7) for details.
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Where to go for more info

- | will post (with permission) Mikkel Plagborg-Mgller's notes on GMM, which you
may find useful.

+ Also see ? for a more formal overview

Erica Moszkowski Review of Estimation Methods 38 /39



References i

Review of Estimation Methods 39 /39



	Review of Extremum Estimators
	MLE
	GMM
	Comparing Estimators
	Computation

